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Abstract. This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature

and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS),

the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer

(ACE-FTS). The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders,

while HALOE and ACE-FTS represent coarse non-uniform sampling patterns characteristic of solar occultation instruments.5

First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it

quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we

find that coarse non-uniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature

and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact

of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that10

coarse non-uniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation

of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such

as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for

example, fingerprints of greenhouse gas warming and stratospheric ozone recovery) than coarse non-uniform sampling such as

that of solar occultation instruments.15

©2016 All rights reserverd.

1 Introduction

Satellite data have provided a wealth of information on the Earth system and have had a profound impact on operational nu-

merical weather forecasting. Unlike ground-based instruments or airborne field campaigns, satellite data provide continuous

global coverage, which facilitates the study and assimilation of distributions of atmospheric fields, as well as global model20

evaluation. However, satellite measurements sample continuously changing atmospheric fields only at discrete times and lo-
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cations, depending on the satellite orbit as well as the measurement technique, which can result in a biased depiction of the

atmospheric field.

Typically, the impact of orbital sampling has been evaluated by comparing a raw model field against a satellite-sampled one.

For example, many studies have documented sampling errors for rainfall estimates (e.g., McConnell and North, 1987; North

et al., 1993; Bell and Kundu, 1995; Soman et al., 1996; Gebremichael and Krajewski, 2005), and brightness temperatures5

(Engelen et al., 2000; Brindley and Harries, 2003), as well as O3, CO, temperature and a few other atmospheric parameters

sampled by nadir-viewing instruments (Luo et al., 2002; Aghedo et al., 2011; Guan et al., 2013). Recently, Toohey et al.

(2013) evaluated the sampling bias in monthly and annual mean climatologies of O3 and H2O from 16 satellite instruments,

including limb emission sounders, limb scattering sounders, solar occultation instruments and a stellar occultation instrument.

They concluded that coarse sampling may introduce significant sampling uncertainties in climatologies, not only through non-10

uniform spatial sampling but, more importantly, through non-uniform temporal sampling, that is to say, producing regional

monthly means using measurements that do not cover the entire month. As expected, the sampling bias was found to be the

greatest in regions with large natural variability.

In this study we evaluate the impact of the Aura Microwave Limb Sounder (MLS), the HALogen Occultation Experiment

(HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) sampling patterns using15

the Canadian Middle Atmosphere Model (CMAM). MLS sampling provides a dense uniform pattern, while HALOE and

ACE-FTS are representative of coarser solar occultation sampling patterns. We use HALOE and ACE-FTS sampling patterns

because they are commonly used solar occultation datasets and, furthermore, because their sampling patterns are significantly

different, and thus representative of the range of observation patterns obtained by solar occultation instruments.

Our study has two purposes: (1) We expand upon previous studies by quantifying the sampling bias of these instruments20

affecting measurements of upper tropospheric and stratospheric temperature and trace gas species. (2) We investigate how

differences in data coverage may affect the outcome of two illustrative atmospheric studies: trend detection and quantification of

tropical vertical velocities. We assess the differences in the long-term (>30 years) trends in temperature, O3, and CO estimated

using datasets with different sampling patterns. We find that sampling-induced spurious features can affect the accuracy of

these trends, which in turn affects estimates of their magnitude as well as their detectability. Also, we characterize the impact25

of orbital sampling on derived lower stratospheric tropical vertical velocities. These velocities are computed by correlating

the lag of the water vapor “tape recorder” signal between adjacent levels (Niwano et al., 2003; Flury et al., 2012; Jiang et al.,

2015). As such, they are likely an upper bound on the actual velocity (Schoeberl et al., 2008). These vertical velocities are

modulated by the Quasi-Biennial Oscillation (QBO), seasonal cycles, and El Niño Southern Oscillation (ENSO) (e.g., Flury

et al., 2013; Neu et al., 2014; Minschwaner et al., 2016). We show that sampling-induced spurious features affect the vertical30

velocity estimates, which in turn will affect estimates of the magnitude of variability in the circulation associated with those

oscillations.

This paper is organizes as follows: Section 2 describes the satellite patterns and the model fields used. Section 3 briefly

revisits sampling bias estimates, while the impact of sampling on long-term trends as well as in trend detection is presented in

section 4. Section 5 addresses the impact of orbital sampling on derived tropical vertical velocities, and section 6 summarizes35
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our results. The results discussed in this study should be considered as example cases. Whether the results shown represent

reasonable estimates of the true orbital sampling induced artifacts (e.g. in the sampling bias, in the inferred magnitude of the

trends, or in the derived tropical vertical velocities) may also depend on how well the model fields represent the real atmosphere.

2 Data and Methodology

2.1 Model Fields5

CMAM is used as a proxy for the real atmosphere. CMAM is an extension of the Canadian Center for Climate Modeling and

Analysis spectral general circulation model. Detailed descriptions of its dynamical and chemical schemes are given by Beagley

et al. (1997) and de Grandpré et al. (2000), respectively. The free-running version of the model has been extensively evaluated,

and has been shown to agree relatively well with observations relevant to chemistry, dynamics, transport, and radiation (e.g.,

de Grandpré et al., 2000; Eyring et al., 2006; Jin et al., 2005; Hegglin and Shepherd, 2007; Melo et al., 2008; Jin et al., 2009).10

In this study we use output from the CMAM30 Specified Dynamics (SD) simulation in which temperature and winds have

been nudged to the ERA-Interim reanalysis. This data set exploits the vast progress made by reanalyses in representing the

stratospheric circulation (e.g., Dee et al., 2011) and as such can be used to reliably predict the chemical fields. Before nudging

the temperature fields, a technique described by McLandress et al. (2014) was used to remove temporal discontinuities in the

ERA-Interim upper stratospheric temperatures that occurred in 1985 and 1998. CMAM30-SD has been shown to have a good15

representation of stratospheric temperature, O3, H2O and CH4 (Pendlebury et al., 2015), it has been used as a transfer function

between satellite datasets to construct a reliable long-term H2O data record (Hegglin et al., 2014), and it has been shown

to reproduce halogen-induced O3 loss sufficiently well for investigation of long-term H2O trends (Shepherd et al., 2014).

The version of CMAM30-SD used here has a horizontal resolution of approximately 3.75◦ latitude by 3.75◦ longitude. This

resolution (approximately 400 km) is comparable to the spatial resolution of HALOE, ACE-FTS and MLS, which is limited by20

the ∼500 km limb-viewing path length, and, hence, no smoothing of the model fields is necessary (Toohey et al., 2013). This

version has 63 vertical levels up to 0.0007 hPa with a vertical resolution varying from 100 m in the lower troposphere to about

3 km in the mesosphere. Model results for the period between January 1979 and December 2012 are used in this study.

We evaluate the following CMAM30-SD outputs: Temperature, O3, CH3Cl, H2O, CO, HCl, N2O, and HNO3. These param-

eters are an intersection of the available CMAM30-SD outputs, the measurements available for MLS, and the measurements25

available for ACE-FTS or HALOE.

2.2 Satellite Instrument Sampling Patterns

In this study we analyze the representativeness of the orbital sampling of the solar occultation instruments HALOE and ACE-

FTS, as well as the limb emission sounder MLS. Solar occultation data are extremely valuable for atmospheric studies due to

their fine vertical resolution, the excellent precision and accuracy of their self-calibrated measurements, and their potential for30

detecting many species. However, the sparsity of the measurements makes understanding the impact of their sampling crucial.
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HALOE was launched on the Upper Atmosphere Research Satellite (UARS) in 1991, and it measured infrared spectra across

eight broadband and gas filter channels from 2.45µm to 10.04µm for 14 years. It measured vertical profiles of temperature,

pressure and several atmospheric trace gases, with as many as 15 sunrise and 15 sunset profiles of these atmospheric parameters

observed at a given latitude each day (Russell et al., 1993). The HALOE sampling sweeps through its full range of latitude

coverage, ranging from ±80o to ±50o depending on the season, over a period of about a month.5

ACE-FTS was launched in 2003 and profiles the atmosphere by using solar occultation. It measures infrared spectra from 2.2

to 13.3µm (750 to 4400 cm−1) with high spectral sampling (0.02 cm−1), which allows retrieval of temperature, pressure and

concentration for several dozen atmospheric trace gases (Bernath et al., 2005). ACE-FTS is focused on high-latitude science,

and thus almost 50% of its approximately 15 sunrise and 15 sunset occultations per day occur at latitudes around 60o. Global

latitude coverage is achieved over a period of approximately three months.10

Aura MLS was launched in 2004 and measures limb millimeter and submillimeter atmospheric thermal emission using

heterodyne radiometers covering spectral regions near 118, 191, 240, 640 GHz and 2.5 THz, from which temperature, trace gas

concentrations and cloud ice are retrieved. Daily, it covers latitudes from 82oS to 82oN with ∼3500 vertical scans providing

near-global observations.

To investigate the impact of orbital sampling, the daily model fields are linearly interpolated to the actual latitude and15

longitude of the satellite measurements. For the sampling patterns, we use a typical year of measurement locations. In particular,

we use 1994, 2005 and 2008 for HALOE, ACE-FTS and MLS, respectively; these are the years with the maximum number

of measurements on record for each dataset. Gaps in the measurements due to instrument problems as well as year-to-year

variations due to orbital state changes are not considered in this study. To avoid differences attributed purely to diurnal cycles,

all satellite measurements are assumed to be made at 12UT, obviating the need for interpolation in time. Thus, we focus only20

on spatial differences. Given that our focus is in horizontal/temporal sampling, all satellite measurements are assumed to have

the same vertical resolution as CMAM30-SD. That is, the impact of the averaging kernels is not addressed in this study.

Figure 1 (left) shows monthly sampling counts for each instrument. MLS has a dense and nearly uniform sample density

over latitude and time, while HALOE and ACE-FTS have sparser and less uniform sample densities because they are limited to

two measurements per orbit. Figure 1 (right) shows the zonal mean water vapor field at 100 hPa as sampled by each instrument25

to highlight how much daily variability may be missed by the HALOE and ACE-FTS sampling patterns. The consequences

of these contrasting sampling densities are the main motivation for this study. As discussed by Manney et al. (2007), mapping

data into vortex-centered coordinate systems such as those based on potential vorticity (PV) or equivalent latitude (EqL) may

alleviate some of the solar occultation sampling density problems for polar processing studies. However, since this study

focuses on near-global trends and tropical upwelling velocities, such vortex-centered coordinate systems are of very limited30

utility here.
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3 Sampling Biases

We evaluate the sampling biases associated with constructing monthly zonal means from the raw and satellite-sampled data.

The raw or sampled zonal means for a particular latitude bin for each pressure level are given by

Zx
l =

1
N

∑
yx

l (1)

where N is the total number of points belonging to a latitude bin l, and x is either the raw data, denoted by the superscript r, or5

the sampled data, denoted by the superscript s. Figure 2 shows examples of raw and sampled zonal means for Temperature, O3

and H2O. The difference between the satellite-sampled zonal mean and the raw zonal mean gives the absolute sampling bias,

that is to say,

SA = Zs
l −Zr

l (2)

or, in percentage,10

SP =
Zs

l −Zr
l

Zr
l

× 100. (3)

Figure 3 shows examples of the sampling biases for Temperature, O3 and H2O for January 2005. Relative biases are shown

for trace gas species to accommodate their strong vertical gradients. These biases only display the impact of sampling the

CMAM30-SD fields; as mentioned before, how well these biases represent the true atmospheric sampling biases will depend

on how close the model fields are to the real atmospheric state.15

For each month, instrument, and pressure level, this bias was computed for all the latitude bins in which an instrument was

able to sound the atmosphere. To summarize the potential sampling biases we computed root-mean-square (RMS) biases over

one year’s worth of data. As an example, Figure 4 shows these calculated RMS sampling biases for Temperature, O3 and H2O

for 2005. Overall, there is a direct correlation between the sampling biases and the variability of the geophysical parameters.

For example, as noted by Toohey et al. (2013), O3 sampling biases for the three instruments are smaller in the tropics and20

larger at midlatitudes and in the polar regions, where variability is low/high, respectively. However, the biases in all regions are

minimized by dense uniform sampling such as that of MLS.

Figure 5 shows the mean and maximum sampling biases over all latitudes for the year 2005 for all the atmospheric param-

eters studied. In general, HALOE and ACE-FTS sampling patterns produce mean and maximum sampling biases an order of

magnitude larger than those of MLS. For example, for the occultation sensors, the Temperature maximum sampling biases25

are about 10 K compared to 1 K for MLS. Similarly, in the middle stratosphere, H2O maximum sampling biases for the solar

occultation instruments can be as large as 5 % compared to less than 1 %, and lastly, HNO3 maximum sampling biases can be

as large as 50 % compared to less than 5 %.

4 Long-Term Trends

We now evaluate the impact of orbital sampling on the representation of long-term trends. Accurate representation of long-term30

trends is crucial because they are indicators of climate change, as well as ozone recovery. To summarize the effect of the orbital
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sampling upon long-term trends we use Taylor diagrams (Taylor, 2001), which provide a convenient method for visualizing

statistics of how closely patterns match each other; in this case, they are used to depict the success of the satellite-sampled data

in representing the variability found in the raw model fields. The similarity is quantified by their correlation coefficient, their

centered RMS difference (RMSd) and their standard deviations.

In the diagrams shown, everything is normalized to the raw-model standard deviation to facilitate showing different pressure5

levels in the same figure. In these diagrams, there are four things to consider: (1) the azimuth angle indicates the correlation

between the satellite-sampled and raw data, (2) the point with normalized standard deviation of one and correlation of one is

the reference point and corresponds to the raw model data, (3) the distance between any point in the figure and the reference

point indicates the ratio of the centered RMSd and the raw-model standard deviation (green contours), and (4) the distance

between other points in the plot and the origin is the ratio between that satellite-sampled standard deviation and that of the raw10

model field.

Near-global (60◦S-60◦N) long-term (1979–2012) trends are compared between satellite-sampled and raw model fields in

Figure 6 for all the atmospheric parameters evaluated in this study. We did not expand this study to the latitudes poleward

of 60◦N or 60◦S because ACE-FTS does not sample these areas for four months per calendar year and HALOE does not

sample for 5 and 6 months at the South and North Pole, respectively (see Figure 1). Figure 7 shows the the raw model standard15

deviations used to normalize these diagrams (black lines). Overall, the MLS-sampled data (circles in Figure 6) for all variables

and all pressure levels are close to the reference point, indicating high correlation coefficients, low centered RMS differences

and the expected standard deviation (i.e., a standard deviation similar to that of the full model fields). The HALOE-sampled

data (triangles) show intermediate performance, followed by the ACE-FTS-sampled data (squares), which show the weakest

correlation and the largest normalized standard deviation. For example, this is easily seen in the CO Taylor diagram, where the20

MLS-sampled points all cluster tightly at the reference point, whereas HALOE-sampled points lie farther away and ACE-FTS-

sampled points the farthest.

To highlight the impact of these sampling differences, Figure 8 shows trend estimates for near-global temperature at 10 hPa

using the raw and satellite-sampled data. Three methods have been used to compute the trends. The first is a simple linear fit

through the points. In the second, we deseasonalize the data (we remove the observed climatological monthly mean at every25

grid point) before computing a linear fit. Lastly, we consider a model of the form,

Y = µ+ω
t

12
+S+N (4)

where Y are the monthly raw or sampled average measurements (Temperature, CO or O3 concentration, etc), µ is a baseline

constant, ω is the mean trend per year, t is time in months, S is a seasonal mean component represented by

S = a1sin(
2π
12
t+ b1) + a2sin(

2π
6
t+ b2) (5)30

and N is the unexplained portion of the data assumed to follow a first order autoregressive model [AR(1)]. That is, it satisfies

N = φN1 + ε (6)
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where φ is the autocorrelation of the noise and ε are independent white noise variables with variance σ2
ε . As pointed out by

Tiao et al. (1990), φ has the effect of reducing the amount of information that would have been available in the same number

of independent data points. Similar models have been used in many previous trend studies (Tiao et al., 1990; Weatherhead et

al., 1998; Boers and Meijgaard, 2009; Whiteman et al., 2011). As shown in Figure 8, HALOE (ACE-FTS) sampling artificially

reduces (increases) the trend estimates by about 10% (25%). Despite agreement on the sign of the trend, these sampling-5

induced artifacts will compromise the robustness of the derived temperature trends. We computed the trend using different

methods in order to emphasize that using models that are more geophysically realistic, such as those that capture the seasonal

component, may not have much impact on the estimated trends, or, as pointed out by Weatherhead et al. (1998), on the trend

statistical properties.

Figure 9 shows how these sampling-induced trend artifacts vary with altitude. To avoid clutter, this figure only shows the10

differences in trend magnitude computed using equation 4, but the ones computed using the other trend detection methods are

similar. We show results for Temperature, O3 and CO because these parameters exhibit clear trends at most pressure levels

in the CMAM30-SD simulations and also because overall they can be accurately described by the model given by equation

4. For O3 we only use data starting from 2000 to capture the expected period of O3 recovery. Overall, MLS sampling allows

estimation of the trend magnitudes to about an order of magnitude better than HALOE and ACE-FTS sampling, with accuracy15

better than 1% at most pressure levels for temperature and CO, and better than 10% for O3.

Figure 9 also shows the estimated number of years required to definitively detect these trends. When using equation 4, the

number of years, n∗, needed to detect a given trend with a 95% confidence level with probability of 0.90 can be approximated

by (Tiao et al., 1990),

n∗ =

[
3.3σN

|ω|

√
1 +φ

1−φ

]2/3

(7)20

which indicates that trend detectability depends on three factors: (1) φ, the autocorrelation of the noise, (2) σN , the standard

deviation of the total noise in the time series, which corresponds to the unexplained variability of the data, and (3) the absolute

magnitude of the trend. It is also noted that σN is related to σε by

σ2
N =

σ2
ε

1−φ2
(8)

in this model. As shown in Figure 9, trend detection using data with HALOE or ACE-FTS sampling will require considerably25

more years than using data with MLS sampling. This is due to an increase in the magnitude of σN resulting from the noisiness

of the time series based on the HALOE or ACE-FTS sampling patterns (e.g. Figure 8). For example, at 1 hPa, the pressure

level where the strongest temperature trend is found in CMAM30-SD, a 15-year record of MLS-sampled observations would

be required to detect such a trend at the 95% confidence level, while HALOE and ACE-FTS sampling would require 25 and

30 years, respectively. For O3 at 2 hPa, the pressure level where the strongest O3 trend is found in CMAM30-SD, the MLS30

sampling pattern would require about 11 years, while HALOE and ACE-FTS would require about 20 and 30 years, respectively.

In addition, MLS sampling requires the same number of years as for the raw model fields; that is, the required number of years

is only determined by the natural variability.
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We also investigated the effect of instrument noise, using Tiao et al. (1990) and Whiteman et al. (2011)

σN =

√
σ2

ε

1−φ2
+
σ2

I

nI
(9)

where σI is the instrument noise and nI is the number of measurements averaged. Typical noise estimates were taken from

Livesey et al. (2015) for MLS; Clerbaux et al. (2005), Sica et al. (2008), and Dupuy et al. (2009) for ACE-FTS; and Hervig

et al. (1996) and Brühl et al. (1996) for HALOE. Since HALOE does not measure CO, we assumed the same error as given5

by Clerbaux et al. (2005) for ACE-FTS. The effect of instrument noise was found to be negligible due to the high number of

measurements even for HALOE and ACE-FTS (in a given month, around 70000 for MLS, 600 for HALOE and 270 for ACE-

FTS). These estimates of the length of the measurement record required to detect trends do not take into account the effects

of a disruption of the measurements for a given period or aging of the instrument, both of which can induce artificial trends in

the data that are not representative of the actual environmental trend studied. In addition, data gaps associated with clouds will10

exacerbate the solar occultation sampling problems in the upper troposphere, whereas microwave emission measurements can

penetrate through aerosol and all but the thickest clouds.

Both HALOE and ACE-FTS provide better coverage in the extratropics than in the tropics (see Figure 1). Figure 10 therefore

shows long-term trend comparisons between satellite-sampled and raw data for trends derived using only data from 30◦ N to

60◦ N. Figure 7 also shows the raw model standard deviations used to normalize these diagrams (purple lines). In general,15

HALOE and ACE-FTS sampled data correlation coefficients improved considerably over the near-global case, with correlation

coefficient no smaller than ∼0.6 and with centered RMSd better than one raw model standard deviation (see Figure 10).

MLS-sampled data are still closest to the reference point.

Figure 11 is equivalent to Figure 9 but for the 30◦ N to 60◦ N latitude range. As for the near-global trends, ACE-FTS sampling

still requires considerably more years to confidently detect a trend than does MLS sampling. HALOE, however, has a more20

uniform sampling density than ACE-FTS in this latitude range (see Figure 1), and thus the time required to detect a trend is

more in line with that for MLS. Nevertheless, MLS sampling allows estimation of trends to about an order of magnitude better

than HALOE and ACE-FTS sampling. As before, the effect of instrument noise was found to be negligible (for this latitude

range the approximate number of measurements in a given month is 19000, 220 and 70 for MLS, HALOE and ACE-FTS,

respectively).25

5 Tropical Vertical Velocities

In this section we investigate the impact of orbital sampling upon derived tropical vertical velocities (a key metric for atmo-

spheric circulation). The vertical velocities are calculated using the same approach as described by Flury et al. (2012) and

Jiang et al. (2015). In short, we use time series of daily zonal mean water vapor data averaged between 8◦S and 8◦N (see

Figure 12). We correlate these time series at different pressure levels and determine the time lag for the best correlation. The30

vertical velocity for the midpoint of each layer is simply computed by dividing the distance between the pressure levels (the

altitude difference) by the lag. These calculations were performed using the raw model CMAM30-SD simulations as well as
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the satellite-sampled data. Interpolation was used to fill the data gaps due to the sampling patterns. In the case of HALOE

sampling, this implies linearly interpolating to fill gaps in June and December, while for ACE-FTS gaps are filled in January,

March, May, July, September, November and December, when no measurements are made over the tropics (8◦S to 8◦N). The

vertical velocities derived from this method are a measure of the transport velocity averaged over 8◦S-8◦N and have been

shown to agree well with the Transformed Eulerian Mean residual vertical velocity when in-mixing from the extratropics and5

vertical diffusion are small (Schoeberl et al., 2008).

Figure 13 (top) shows the vertical velocities averaged over 60-30 hPa derived using raw model fields as well as the satellite-

sampled data. To quantify the impact of the different orbital sampling patterns, Figure 13 (bottom) displays scatter plots

between the raw fields and the satellite-sampled vertical velocities. The best correlation (R = 1.00), the best line fit (0.93x+0.02)

and the smallest RMSd (0.005) are found when using the MLS sampling. ACE-FTS and HALOE sampling lead to non-10

negligible artifacts when deriving vertical velocities from the tape recorder.

Previous studies have shown variability in middle stratospheric tropical vertical velocities on the order of up to ± 40%

associated with the QBO and ENSO (Flury et al., 2013; Neu et al., 2014; Minschwaner et al., 2016). To better understand the

impact of these sampling-induced artifacts, we fit the following model to the monthly vertical velocities

wTR = q ∗QSI[t− tq] + e ∗MEI[t− te] + c (10)15

where wTR is the vertical velocity derived from the tape recorder, QSI is a QBO shear index, MEI is the multivariate ENSO

index, c is a baseline constant, q and e are constants modifying the magnitude of the QSI or MEI, and, tq and te are the QSI

or MEI time offsets, respectively. The QSI is calculated from the difference in the Singapore zonal winds at 50 and 25 hPa

(Naujokat, 1986). The MEI is determined using a combination of the principal component analysis of sea level pressure, sea

surface temperature, zonal and meridional surface winds, surface air temperature and cloudiness as described by Wolter et20

al. (1998, 2011). Figure 14(a) shows the time series of the QSI and the MEI, along with the vertical velocities averaged over

60-30 hPa derived using raw model fields. As can be seen, these vertical velocities are clearly correlated with the QSI but

also show a strong relationship with the MEI in some years. Figure 14(b-e) displays the results of fitting the model described

by equation 10 to the raw (b) and satellite-sampled (c-e) derived vertical velocities. The time offsets were fitted using the raw

model fields and then imposed onto the satellite-sampled data. We do not fit a modeled seasonal cycle, such as the one described25

by equation 5, because the methodology used suppresses the seasonal cycle (Flury et al., 2013). As shown, this model is able

to capture most of the variability in the derived vertical velocities. The fits are primarily driven by the QSI, with MLS sampling

overestimating its influence by 3.8% (the differences in q in the equations shown in Figure 14), while HALOE and ACE-FTS

sampling underestimate it by 30.7 and 31.5%, respectively. The impact of the sampling is more pronounced for the MEI (the

differences in e), with MLS, HALOE and ACE-FTS underestimating its influence by 11, 64 and 122%. We emphasize that30

these sampling-induced offsets to the strength of the modulation effects of the QBO and ENSO on the circulation are only

applicable to CMAM30-SD fields. These fields may not accurately represent the stratospheric tropical vertical velocities and,

consequently, the actual sampling offsets could be different. As such, they should be considered only as potential biases.
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The changes in tropical upwelling associated with QBO and ENSO assessed here have been shown to alter O3 transport to

the midlatitude lower stratosphere and to account for approximately half the interannual variability in midlatitude tropospheric

O3 (Neu et al., 2014). It has been hypothesized that this observed relationship between stratospheric upwelling changes and

changes in tropospheric O3 may provide an emergent constraint on the tropospheric O3 response to long-term strengthening

of the circulation associated with greenhouse gas increases. If so, accurate quantification of the variability in tropical vertical5

velocities is crucial to reducing uncertainties in estimating this response.

6 Summary

In this paper we evaluate the effect of orbital sampling on satellite measurements of stratospheric temperature and several

trace gases. In particular, we quantify the impact of sampling in terms of the sampling bias. To illustrate the impact of orbital

sampling on the outcome of representative atmospheric studies, we also quantify the induced differences in the inferred mag-10

nitude of trends and their detectability, as well as the induced differences in derived tropical vertical velocities. We calculate

these sampling-induced artifacts by interpolating CMAM30-SD model fields (used as a proxy for the real atmosphere) to the

real sampling patterns of three satellite instruments —Aura MLS, HALOE and ACE-FTS— to allow us to compare a dense

uniform sampling pattern characteristic of limb emission sounders to the coarse non-uniform sampling patterns characteristic

of solar occultation instruments.15

The results suggest that overall:

– Coarse non-uniform sampling patterns, such as the ones from HALOE and ACE-FTS, can introduce sampling biases

about an order of magnitude greater than those from dense uniform sampling patterns, such as the one from MLS. For

example, we found a temperature maximum sampling bias of about 10 K compared to 1 K, and H2O maximum sampling

biases as large as 5% as opposed to less than 1%, in the middle stratosphere. These results corroborate the results of20

Toohey et al. (2013) and Sofieva et al. (2014).

– Dense uniform sampling patterns accurately reproduce the magnitude of the model trends with only small errors. Records

based on such sampling patterns will require the same number of years as when using the raw model fields, that is to

say, trend detection is limited only by the natural variability. In contrast, coarse non-uniform sampling patterns may

introduce non-negligible errors in the inferred magnitude of trends, with considerably more years of data thus required25

to conclusively detect a given trend. This is because the sparse sampling leads to an increase in the standard deviation

of the total noise in the time series. For example, for near-global temperature trends (60◦S-60◦N) at 10 hPa, HALOE

and ACE-FTS sampling patterns artificially bias the trend estimates by about −10 and 25%, respectively. Also, at 1 hPa,

the pressure level where the strongest temperature trend was found in CMAM30-SD, an MLS sampling pattern will

require 15 years to detect this particular trend, while the HALOE and ACE-FTS sampling will require 25 and 30 years,30

respectively.
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– Coarse non-uniform sampling patterns may lead to an over or underestimation of the modulation effects of the control-

ling mechanisms of the tropical vertical velocities. For example, with respect to CMAM30-SD estimates, HALOE and

ACE-FTS sampling patterns underestimate the QBO modulation strength by 30.7 and 31.5%, and the ENSO modulation

strength by 64 and 122%, respectively. Dense uniform sampling patterns are considerably better suited to deriving trop-

ical vertical velocities; for example, MLS sampling only overestimates the QBO influence by 3.8% and underestimates5

the ENSO influence by 11%.

Stratospheric changes such as an increase in the circulation and trends in temperature and O3 are signatures of greenhouse

gas warming and stratospheric O3 recovery. Thus, our ability to accurately measure these changes is crucial for detecting

anthropogenic influences on climate.
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Figure 1. (left) Monthly sampling counts for MLS, HALOE and ACE-FTS, in 4◦ latitude bins. Note the non-uniform colorbar increments.

(right) Zonal mean water vapor at 100 hPa as sampled by MLS, HALOE and ACE-FTS for individual days. White regions denote a lack of

measurements.
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White regions denote a lack of measurements.
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Figure 3. January 2005 sampling bias as a function of latitude and pressure for Temperature, O3, and H2O (top to bottom) as measured using

MLS, HALOE and ACE-FTS sampling patterns (left to right). White regions denote a lack of measurements.
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Figure 4. Root mean square sampling bias for 2005 as a function of latitude and pressure for Temperature, O3, and H2O (top to bottom) as

measured using MLS, HALOE and ACE-FTS sampling patterns (left to right). White regions denote a lack of measurements.
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Figure 6. Taylor diagrams showing near-global (60◦S to 60◦N) long-term (1979–2012) trend comparisons between the raw (the reference

point at (1,0)) and the satellite-sampled data at different pressure levels. The green contours indicate the normalized RMS difference values.
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brackets we show the percentage difference in trend magnitude with respect to the trend found using the raw model data.
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Figure 10. As figure 6 but for 30◦N to 60◦N.
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Figure 11. As figure 9 but for 30◦N to 60◦N.
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Figure 12. The atmospheric tape recorder (zonal mean water vapor anomalies in the tropics, in this case for CMAM30-SD raw model fields)

displays a clear signal of the large-scale upward transport as indicated by the arrow. The slope of this arrow, which is derived from the

propagation speed of the water vapor anomalies, represents the average tropical upwelling velocity for 8◦S-8◦N. This subset of years is

shown as an example; other years are similar.
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Figure 13. (top) wTR (monthly vertical velocities) derived using daily time-correlations of the water vapor tape recorder at different pressure

levels from the raw CMAM30-SD data as well as the satellite-sampled data. wTR derived using the raw model fields and MLS-sampled

data are almost identical. The pressure levels averaged are 30, 40, 50 and 60 hPa. (bottom) wTR scatterplots [mm/s] for MLS, HALOE and

ACE-FTS sampling, respectively, versus the velocities derived using raw model fields.
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Figure 14. (a) Time series of wTR (mean monthly vertical velocities averaged over 30, 40, 50 and 60 hPa) derived using CMAM30-SD raw

data (black), the quasibiennial oscillation (QBO) shear index (QSI - purple) and the Multivariate ENSO index (MEI - orange dashed line).

(b) Time series of wTR for the raw model fields (black) as well as the model fit described by equation 10 (gray). (c-e) Time series of wTR

for satellite-sampled data (color coded). The thin black line displays the same wTR derived using raw model fields (black line in panel b) for

ease of comparison with the satellite-sampled ones. The model fit for each of the satellite-sampled wTR values, described by equation 10, is

shown in gray for each of these time series.

23

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-356, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 9 May 2016
c© Author(s) 2016. CC-BY 3.0 License.


